Parachute Inflation and Opening Shock

Dean F. Wolf

Parachute Seminar

3rd International Planetary Probe Workshop

Outline

- Maximum parachute structural loads almost always occur during inflation
- Performance predictions frequently require accurate inflation time predictions

Why Study Parachute Inflation Theory?

- Maximum parachute structural loads almost always occur during inflation
- Performance predictions frequently require accurate inflation time predictions
 - Usually less important than loads

Is Parachute Inflation Theory a Difficult Topic?

- Fluid Mechanics
 - Unsteady, viscous often compressible flow about a porous body with large shape changes
- Structural Dynamics
 - A tension structure that undergoes large transient deformations

Is Parachute Inflation Theory a Difficult Topic?

Materials

 Nonlinear materials with complex strain, strain rate and hysteresis properties

Coupling

All of the above disciplines are strongly coupled

Parachute Inflation Stages

- Initial inflation until vent pressurized
- Final inflation fro vent pressurization to full open
- Initial inflation can start during deployment
 - Usually desirable

Steady Flow Equation

 Bernoulli equation for steady, inviscid, incompressible flow along a streamline (perfect fluid)

$$\frac{\mathsf{P}}{\rho} + \frac{1}{2} \, \mathsf{V}^2 = \mathsf{C}$$

- P = pressure
- $\rho = density$
- V = velocity
- C = constant

Steady Flow Around Sphere

 Pressure distribution on a sphere in steady, inviscid, incompressible flow (perfect fluid)

$$\frac{\mathsf{P} - \mathsf{P}_{\infty}}{\rho} = \left(\frac{9}{8} \cos^2 \theta - \frac{5}{8}\right) \mathsf{V}^2$$

- $-P_{\infty}$ = pressure far from sphere
- $-\theta$ = angle from stagnation point

Steady Flow Drag Force

Drag force on body in steady flow

$$D = C_d \frac{1}{2} \rho V^2 S$$

- -D = drag
- C_d = drag coefficient
- -S = area

Perfect Fluid Steady Flow

- Simple fluid model gives the correct functional form for drag force
- Shape of pressure distribution and magnitude of drag force are incorrectly predicted
- Real fluid effects due to viscosity and compressibility must be accounted for in pressure and drag coefficients

Parachute Opening Shock

- The simplest form of estimating parachute opening shock load is to modify the steady drag equation
 - $F_{\text{max}} = C_k C_d A Q$
 - C_k is parachute opening shock factor
 - C_d is parachute drag coefficient
 - A is reference area
 - Q is dynamic pressure

Parachute Opening Shock Factor

- Infinite mass opening shock factor is primarily a function of canopy porosity
 - Infinite mass implies no deceleration during inflation
 - Maximum load occurs at maximum diameter
- Finite mass opening shock factor is primarily a function of mass ratio (characteristic fluid mass/system mass)
 - Finite mass implies significant deceleration during inflation
 - Acceleration of a large fluid mass (relative to system mass)
 causes system deceleration due to momentum transfer
 - Maximum load occurs early in inflation process

- Wind tunnel data for models with only geometric porosity variations
- Disreefed from nearly closed to full open in steady flow
- High opening shock the result of faster inflation at low porosities

- Finite mass opening shock factor is primarily a function of mass ratio (characteristic fluid mass/system mass)
 - Inverse ratio (system mass/characteristic fluid mass) also sometimes used
- Most common mass ratio used is [ρ(C_dS)^{1.5}/M]
 - Where ρ is atmospheric density
 - C_dS is parachute drag area
 - M is system mass
- Most extensive correlations
 - Ewing AFFDL-TR-72-3
 - Knacke NWC TP 6575

- For unreefed parachute or inflation to 1st reefed stage
- Data from other sources added to Knacke/Ewing data
- Data near Y-axis from infinite mass wind tunnel tests

- For disreef of reefed parachute
- Data from other sources added to Knacke/Ewing data
- Data near Y-axis from infinite mass wind tunnel tests

- Ewing/Bixby/Knacke AFFL-TR-78-151
- Same data set as Knacke/Ewing data
- More specific data correlations from subsets of the data
- Extremes of data scatter shown with mean values

Parachute Load Estimates

- Finite mass opening shock factors can be used to provide rapid estimates of parachute opening loads
 - No computer code required
 - Calculator or "back of the envelope" estimate
 - Might need atmosphere table
 - Accurate enough for most parachute design work
 - Quick "sanity check" for computer codes

Unsteady Flow Equation

 Bernoulli equation for unsteady, inviscid, incompressible and irrotational flow along a streamline (perfect fluid)

$$\frac{\mathsf{P}}{\rho} + \frac{1}{2} \mathsf{V}^2 + \frac{\partial \phi}{\partial \mathsf{t}} = \mathsf{C}(\mathsf{t})$$

- ϕ = velocity potential (grad ϕ = V)
- -t = time

Unsteady Flow Around Sphere

 Pressure distribution on a sphere in unsteady, inviscid, incompressible and irrotational flow along a streamline (perfect fluid)

$$\frac{\mathsf{P} - \mathsf{P}_{\infty}}{\rho} = \left(\frac{9}{8} \cos^2 \theta - \frac{5}{8}\right) \mathsf{V}^2 + \frac{1}{2} \mathsf{R} \cos \theta \, \frac{\partial \mathsf{V}}{\partial \mathsf{t}}$$

– R = radius of sphere

Unsteady Flow Kinetic Energy

 For the same unsteady flow (unsteady, inviscid, incompressible, irrotational), the fluid kinetic energy can be written

$$T = \frac{1}{2} A_x V_x^2$$

- T = kinetic energy
- $-A_x = a$ fluid mass
- $-V_x$ = velocity of fluid mass (body)

Unsteady Flow Force

 The unsteady fluid force on a body in onedimensional motion is

$$F_{x} = -\frac{d}{dt} \left(\frac{\partial T}{\partial V_{x}} \right) = -A_{x} \frac{dV_{x}}{dt}$$

For a sphere, A_x can be written

$$A_{x} = C_{ax} \frac{4}{3} \rho \pi R_{p}^{3}$$

 $C_{ax} = 0.5$ (apparent mass coefficient)

 R_p = parachute radius

Ballistic Equations of Motion

 The equations of motion used in most simple trajectory computer codes are the ballistic or zero angle of attack equations

$$(m + A_x)\frac{dV_x}{dt} = m g \sin \gamma - C_d \frac{1}{2}\rho V_x^2 S$$
$$(m + A_x)V_x \frac{d\gamma}{dt} = m g \cos \gamma$$

m = system massg = gravitational accelerationγ = trajectory angle

Dimensionless Equations

The ballistic equations can be written in dimensionless form

$$\frac{dV_{x^*}}{dt^*} = \frac{\sin \gamma}{F_r \left(1 + \frac{C_{ax}}{K_t}\right)} - \frac{\frac{3}{8} C_d V_x^2}{\left(K_t + C_{ax}\right)}$$

$$\frac{d\gamma}{dt^*} = \frac{K_t \cos \gamma}{F_r V_{x^*} (K_t + C_{ax})}$$

<u>Dimensionless Variables and</u> <u>Parameters</u>

Dimensionless Variables

$$V_{x^*} = \frac{V_x}{V_0}$$
; $t^* = \frac{t V_0}{R_p}$

Dimensionless Parameters

$$F_{r} = \frac{V_{0}^{2}}{gR_{p}}$$
; $K_{t} = \frac{m}{\frac{4}{3}\rho\pi R_{p}^{3}}$

 V_0 = initial velocity

Unsteady Flow Around Expanding Decelerating Sphere

 Pressure distribution on an expanding, decelerating sphere in inviscid, incompressible and irrotational flow

$$\frac{P - P_{\infty}}{\rho} = \left(\frac{9}{8}\cos^2\theta - \frac{5}{8}\right)V_x^2 + \frac{1}{2}R\cos\theta \frac{dV_x}{dt}$$
$$+ \frac{3}{2}V_r^2 + R\frac{dV_r}{dt} + \frac{3}{2}\cos\theta V_x V_r$$
$$V_r = \frac{dR}{dt}$$

<u>Unsteady Forces on Inflating,</u> <u>Decelerating Parachute</u>

Axial force along flight path

$$F_{xu} = -\left(A_x \frac{dV_x}{dt} + V_x \frac{dA_x}{dt}\right)$$

Radial force

$$F_{ru} = -\left(A_r \frac{dV_r}{dt} + V_r \frac{dA_r}{dt}\right)$$

No axial/radial coupling

<u>Dimensional Analysis and Unsteady</u> <u>Flow Conclusions</u>

 Dimensional analysis identifies dimensionless parameters that influence opening shock and inflation time

```
- Mass ratio K_t = m / [(4/3) \rho \pi R_p^3]
```

- Froude number $F_r = V_0^2 / (g R_p)$
- Simplified perfect fluid analysis provides insight into functional form of forces and pressure distributions

Drag Area vs Time Inflation Models

- Simplest models specified drag area vs time as input to a point mass trajectory code
 - Inflation times often artificially adjusted to match loads
 - Inflation times sometimes scaled using dimensionless time
- Use of drag area as an independent variable in trajectory codes explains use of drag area directly to calculate mass ratio
- Combined use of point mass computer code and the mass ratio C_k correlations improved use of this method

Continuity Equation Inflation Models

- More sophisticated models solved a conservation of mass equation for the parachute internal volume
 - Mass flow in determines rate of change of internal volume
 - Similar shapes used to get diameter and parachute drag
- Calculated shapes combined with point mass trajectory code
 - Apparent mass often used in equations of motion
- Extensive work by U. of Minnesota Dr. Heinrich

Similar Shapes Used in Continuity Equation Inflation Models

- Early shapes were simple because calculations were manual
- More realistic shapes allowed using computers
- Inflow and outflow assumptions required

Constant Distance Theory Models

- Another family of inflation models was based on the observation that "a parachute always inflates in a fixed distance traveled"
- This assumption is equivalent to the conservation of mass assumption
 - A column of air ahead of the parachute eventually occupies the internal volume

Constant Distance Theory Models

- Both the conservation of mass and constant distance theory models assume dynamic similarity in the inflation process
 - Parachute mass ratio doesn't change much
- Instead of similar shapes, radial velocity can be directly specified to be a function of axial velocity
- A compressibility correction to constant distance theory was proposed

Proposed Compressibility Correction

- Compressibility correction assumed normal shock ahead of canopy for density correction
- Wind tunnel photo and drag data show this is incorrect
 - Actual density change is small fraction of normal shock correction

Simple Dynamic Inflation Model

- Model based on conservation of momentum
 - Parachute inflation is a dynamics problem, not a quasi-static problem
 - Single radial degree of freedom
 - Rigid coupling parachute and payload
 - Unreefed parachutes only
 - Steady and unsteady aerodynamic effects

Trajectory for Model

- Ballistic (zero angle of attack) trajectory
- Velocity at payload and parachute different because parachute moves toward payload during inflation

Parachute Geometry for Model

Similar shapes

- Hemispherical inflated part
- Conical uninflated part
- Rigid coupling between parachute and payload

Simple Dynamic Inflation Model

- Single canopy mass element located at maximum diameter point
- Steady radial force coefficient data based on inflated geometry
- Radial force to drag force ratio required to produce canopy shape was obtained from photographic data

Simple Dynamic Inflation Model

- Equations were put in non-dimensional form
 - A second mass ratio, the parachute mass ratio, was revealed
- Predictions of the model were compared with test data from the PEPP tests
- Predicted inflation time variations over the wide altitude range of tests agreed very well with PEPP data

Non-dimentional Inflation Times for DGB Parachutes

- Dimensionless inflation times correlated well with parachute mass ratio over wide altitude range
 - No compressibility correction

Non-dimentional Inflation Times for all PEPP Parachutes

- Dimensionless inflation times correlated well with lower bound of data
- No compressibility correction

Non-dimentional Inflation Times for all PEPP Parachutes

 Dimensionless inflation times with compressibility corrections based on density estimate required for drag coefficient vs Mach number variation

Opening Shock Factor for all PEPP Parachutes

- Drag coefficient vs Mach number from wind tunnel data
- Predictions span range of data scatter

Conclusions from Simple Dynamic Inflation Model Study

- Parachute mass ratio should be considered an important scaling factor for use of parachutes in low density environment
- Compressibility correction appears to be much less than proposed for constant distance theory models

More General Dynamic Inflation Model

- Two radial degrees of freedom
- Elastic elements couple parachute masses and payload
- Can be used to model reefed parachutes
- Parametric aerodynamic data for different porosities measured to provide design data base

Trajectory for Model

- Ballistic (zero angle of attack) trajectory
- Velocity at payload and parachute different because parachute moves toward payload during inflation

Forces on Mass Elements

- Two parachute mass elements
 - Maximum diameter
 - Skirt
- Radial force applied at maximum diameter element

Elastic Constraints on Mass Elements

- Allows different elastic properties for suspension lines and radials
- Realistic modeling of reefing line constraint and cutting of reefing line

Use of Dynamic Inflation Model

- Used to design many parachutes at Sandia
- Reefing easy to include
- Also used to study wake overtake which occurs during rapid deceleration

Multi-Element Dynamic Inflation Model

- Many mass elements used to model parachute
- Used to study parachute deployment and inflation in greater detail

Multi-Element Dynamic Inflation Model

 Used to study variations of tension, radius, pressure and other variables along length of parachute

